Explicit Arithmetic of Modular Curves Lecture III: Eichler–Shimura and Modular Jacobians

Samir Siksek (Warwick/IHÉS/IHP)

19 June 2019

Notation

 $\begin{array}{ll} H & \text{subgroup of } \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}) \text{ satisfying } \det(H) = (\mathbb{Z}/N\mathbb{Z})^*. \\ \Gamma_H & \{A \in \operatorname{SL}_2(\mathbb{Z}) \ : \ (A \mod N) \in H \cap \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})\}, \\ & \text{congruence subgroup associated to } H. \\ X_H & \text{modular curve associated to } H & (X_H(\mathbb{C}) \cong \Gamma_H \setminus \mathbb{H}^*). \\ J_H & \text{Jacobian of } H. \\ & X_H \text{ and } J_H \text{ have models over } \operatorname{Spec}(\mathbb{Z}[1/N]), \\ & \text{so makes sense to talk about reduction at } \ell \nmid N. \\ \Omega(H) & \text{space of regular differentials on } X_H. \\ S_2(\Gamma_H) & \text{space of weight 2 cuspforms for } \Gamma_H. \end{array}$

There is an isomorphism

$$S_2(\Gamma_H) \cong \Omega(X_H), \qquad f(q) \mapsto f(q) \frac{dq}{q}.$$

In particular,

$$genus(X_H) := \dim(\Omega(X_H)) = \dim(S_2(\Gamma_H)).$$

Eichler–Shimura

There is an action of the Hecke algebra on $S_2(\Gamma_H)$. Let f_1, \ldots, f_n be representatives of Galois orbits of Hecke eigenforms.

Theorem (Eichler-Shimura)

Let $f \in \{f_1, \ldots, f_n\}$ be some representative of the Galois orbits of the eigenforms.

- Associated to f is an abelian variety \mathcal{A}_f/\mathbb{Q} .
- dim $(A_f) = [K_f : \mathbb{Q}]$ where K_f is the Hecke eigenvalue field of f.
- Moreover, $End_{\mathbb{Q}}(\mathcal{A}_f)$ is an order in K_f (we say that \mathcal{A}_f is of GL_2 -type).
- In particular rank $(\mathcal{A}_f(\mathbb{Q}))$ is a multiple of $[K_f : \mathbb{Q}]$.

Finally,

$$J_{H} \sim \mathcal{A}_{f_1} \times \mathcal{A}_{f_2} \times \cdots \times \mathcal{A}_{f_n},$$

where \sim denotes isogeny over \mathbb{Q} .

Example $J_0(43)$

Let us consider $X_0(43)$ and its Jacobian $J_0(43)$. i.e. we're taking $H = B_0(43) \subset GL_2(\mathbb{F}_{43})$ and $\Gamma_H = \Gamma_0(43)$. Using Magma or SAGE: eigenforms of $S_2(\Gamma_0(43))$ are

$$f = q - 2q^{2} - 2q^{3} + 2q^{4} - 4q^{5} + \cdots$$

$$g_{1} = q + \sqrt{2} \cdot q^{2} - \sqrt{2} \cdot q^{3} + (2 - \sqrt{2}) \cdot q^{5} + \cdots$$

$$g_{2} = q - \sqrt{2} \cdot q^{2} + \sqrt{2} \cdot q^{3} + (2 + \sqrt{2}) \cdot q^{5} + \cdots$$

The Hecke eigenvalue field for f is \mathbb{Q} . The eigenform f corresponds to a dimension 1 abelian variety, which is the elliptic curve 43A1 with Weierstrass model

$$\mathcal{A}_f : y^2 + y = x^3 + x^2.$$

Note that g_1 , g_2 form a single Galois orbit, with Hecke eigenvalue field $\mathbb{Q}(\sqrt{2})$ of degree 2. The abelian variety $\mathcal{A}_{g_1} = \mathcal{A}_{g_2}$ has dimension 2. Moreover,

$$J_0(43) \sim \mathcal{A}_f imes \mathcal{A}_{g_1}$$

has dimension 3 and so $X_0(43)$ has genus 3. What can we say about the Mordell–Weil group $J_0(43)(\mathbb{Q})$?

Kolyvagin–Logachev

Now let $g \in \{f_1, \ldots, f_n\}$, let K_g be the Hecke eigenvalue field of g, and let $\sigma_1, \ldots, \sigma_d : K_g \hookrightarrow \mathbb{C}$ be the embeddings of \mathbb{C} (here $d = [K_g : \mathbb{Q}] = \dim(\mathcal{A}_g)$). Let $g_i = \sigma(g)$ be the conjugates of g. Then we have an equality of *L*-functions

$$L(\mathcal{A}_g,s) = \prod_{i=1}^d L(g_i,s) \qquad (g = \sum a_n q^q \implies L(g,s) = \sum \frac{a_n}{n^s}).$$

We have the following famous theorem, which is a version of weak BSD for modular Jacobians.

Theorem (Kolyvagin and Logachev)

Suppose A_g is a factor of $J_0(M)$ for some M.

- (i) If $\operatorname{ord}_{s=1}(L(g_i, s)) = 0$ for some *i* then $\operatorname{ord}_{s=1}(L(g_i, s)) = 0$ for all *i* and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q})) = 0$.
- (ii) If $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for some *i* then $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for all *i* and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q})) = \dim(\mathcal{A}_g) = [K_g : \mathbb{Q}].$

$$L(\mathcal{A}_g,s) = \prod_{i=1}^d L(g_i,s) \qquad (g = \sum a_n q^q \implies L(g,s) = \sum \frac{a_n}{n^s}).$$

Theorem (Kolyvagin and Logachev)

Suppose A_g is a factor of $J_0(M)$ for some M.

- (i) If $\operatorname{ord}_{s=1}(L(g_i, s)) = 0$ for some *i* then $\operatorname{ord}_{s=1}(L(g_i, s)) = 0$ for all *i* and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q})) = 0$.
- (ii) If $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for some *i* then $\operatorname{ord}_{s=1}(L(g_i, s)) = 1$ for all *i* and $\operatorname{rank}(\mathcal{A}_g(\mathbb{Q})) = \dim(\mathcal{A}_g) = [K_g : \mathbb{Q}].$

Fact. $L(\mathcal{A}_g, 1)/\Omega_g \in \mathbb{Q}$ is a rational number, where Ω_g is integral of the Néron differential over $\mathcal{A}_g(\mathbb{R})$.

The modular symbols algorithm can in fact compute $L(\mathcal{A}_g, 1)/\Omega_g$ exactly. Values $L^{(r)}(\mathcal{A}_g, 1)$ can only be computed numerically for $r \geq 1$.

$X_0(43)$ continued.

Recall

 $J_0(43) \sim \mathcal{A}_f \times \mathcal{A}_{g_1} \qquad \dim(\mathcal{A}_f) = 1, \quad \dim(\mathcal{A}_{g_1}) = 2.$

What can we say about the Mordell–Weil group $J_0(43)(\mathbb{Q})$?

In fact

$$rac{L(\mathcal{A}_f,1)}{\Omega_{\mathcal{A}_f}}=0, \qquad rac{L(\mathcal{A}_{g_1},1)}{\Omega_{\mathcal{A}_g}}=rac{2}{7}.$$

So we know that $\mathcal{A}_{g_1}(\mathbb{Q})$ has rank 0 from the Kolyvagin–Logachev theorem. What about $\mathcal{A}_f(\mathbb{Q})$?

We find that

$$L'(f,1) = 0.34352...$$

so by the Kolyvagin–Logachev theorem, $\mathcal{A}_f(\mathbb{Q})$ has rank 1. Hence $J_0(43)(\mathbb{Q})$ has rank 1.

Injectivity of Torsion

Let \mathcal{A} be an abelian variety over \mathbb{Q} . We know $\mathcal{A}(\mathbb{Q})_{\mathrm{tors}}$ is finite.

Let p be a prime of good reduction for A. Then we have a natural homomorphism

$$\operatorname{red}_{p}$$
 : $\mathcal{A}(\mathbb{Q}) \to \mathcal{A}(\mathbb{F}_{p}), \qquad P \mapsto \widetilde{P}.$

Theorem (Katz)

Let \mathcal{A} be an abelian variety over \mathbb{Q} . Let $p \geq 3$ be a prime of good reduction. Then red_p is injective when restricted to the torsion subgroup $\mathcal{A}(\mathbb{Q})_{\operatorname{tors}}$.

$X_0(31)$ and $X_1(31)$

Let's consider $J_0(31)$ instead. There is only one Galois orbit of eigenforms of weight 2 for $\Gamma_0(31)$:

$$f_1 = q + \alpha q^2 - 2\alpha q^3 + (\alpha - 1)q^4 + q^5 + \cdots, \qquad \alpha = \frac{1 + \sqrt{5}}{2}$$

$$f_2 = q + \beta q^2 - 2\beta q^3 + (\beta - 1)q^4 + q^5 + \cdots, \qquad \beta = \frac{1 - \sqrt{5}}{2}.$$

 $\therefore X_0(31)$ has genus 2.

And $J_0(31)$ is a simple 2-dimensional abelian variety.

We find that

$$L(J_0(31), 1)/\Omega = 2/5, \quad \therefore \operatorname{rank}(J_0(31)(\mathbb{Q})) = 0.$$

Objective. Use fact rank $(J_0(31)(\mathbb{Q})) = 0$ to show that are no elliptic curves over \mathbb{Q} with a point of order 31.

Work by contradiction. Suppose E/\mathbb{Q} has a \mathbb{Q} -rational point Q of order 31. Then P = [(E, Q)] is a non-cuspidal rational point $P \in X_1(31)(\mathbb{Q})$.

We consider this commutative diagram.

Note that $\pi(P) = [(E, \langle Q \rangle)].$

Assumption: E/\mathbb{Q} has a point Q of order 31.

Question: Can *E* has good reduction at 3? Suppose it does. Then, by the injectivity of torion, $E(\mathbb{F}_3)$ has a point of order 31, which is impossible because $\#E(\mathbb{F}_3) \leq 7$ by the Hasse–Weil bounds.

 \therefore *E* cannot have good reduction at 3.

Question: Can E have potentially good reduction at 3? Suppose it does. We consider the filtration

$$E(\mathbb{Q}_3) \supset E_0(\mathbb{Q}_3) \supset E_1(\mathbb{Q}_3) \supset E_2(\mathbb{Q}_3) \cdots$$

Theory of the formal group tells us $E_1(\mathbb{Q}_3) \cong \mathbb{Z}_3$ which has no torsion. Moreover,

 $[E(\mathbb{Q}_3): E_0(\mathbb{Q}_3)] \le 4, \qquad [E_0(\mathbb{Q}_3): E_1(\mathbb{Q}_3)] = \#\tilde{E}_{ns}(\mathbb{F}_3) = 3$

- as E has additive reduction.
- \therefore $E(\mathbb{Q}_3)$ does not have 31 torsion. Contradiction.

Assumption: E/\mathbb{Q} has a point Q of order 31.

 \therefore *E* has potentially multiplicative reduction at 3.

 \therefore ord₃(*j*(*E*)) < 0.

 $\operatorname{ord}_3(j(E)) < 0 \implies \text{ image of } P \text{ in in } X(1)(\mathbb{F}_3) \text{ is the cusp.}$

 $\therefore \pi(P) \equiv c \pmod{3}$ $c \in \{ \text{cusps of } X_0(31) \}.$

Consider $[\pi(P) - c] \in J_0(31)(\mathbb{Q}).$

This is a torsion point as $J_0(31)(\mathbb{Q})$ has rank 0.

 $\operatorname{ord}_3(j(E)) < 0 \implies \text{image of } P \text{ in in } X(1)(\mathbb{F}_3) \text{ is the cusp.}$

$$\therefore \pi(P) \equiv c \pmod{3} \qquad c \in \{\text{cusps of } X_0(31)\}.$$

Consider $[\pi(P) - c] \in J_0(31)(\mathbb{Q})$. This is a torsion point as $J_0(31)(\mathbb{Q})$ has rank 0.

But $[\pi(P) - c] = 0 \in J_0(31)(\mathbb{F}_3)$. By injectivity of reduction modulo 3 on torsion $[\pi(P) - c] = 0 \in J_0(31)(\mathbb{Q})$. $\therefore \pi(P) = c$.

 $\therefore X_1(31)(\mathbb{Q}) \subset \{ \text{cusps} \}.$

- We only needed the fact that the point comes from X₁(31) to make sure it reduces to a cusp modulo 3.
- In fact if $R \in X_0(31)(\mathbb{Q})$ reduces to a cusp modulo any prime $p \neq 2$, 31 then R must equal that cusp, by the above argument.
- i.e. if $R \in X_0(31)(\mathbb{Q})$ then $j(R) \in \mathbb{Z}[1/62]$. So problem of determining the rational points on $X_0(31)$ is essentially reduced to a problem about integral points.
- Determining $X_0(31)(\mathbb{Q})$ is easier if we know the whole of $J_0(31)(\mathbb{Q})$.

Theorem (Mazur)

Let p be a prime. Then

$$J_0(p)(\mathbb{Q})_{\mathrm{tors}} = (\mathbb{Z}/d_p\mathbb{Z})\cdot [c_1-c_2], \qquad d_p = \mathsf{num}\left(rac{p-1}{12}
ight)$$

where c_1 , c_2 are the two cusps of $X_0(p)$.

 $J_0(31)(Q)$

Theorem (Mazur)

Let p be a prime. Then

$$J_0(p)(\mathbb{Q})_{\mathrm{tors}} = (\mathbb{Z}/d_p\mathbb{Z}) \cdot [c_1 - c_2], \qquad d_p = \mathrm{num}\left(\frac{p-1}{12}\right)$$

where c_1 , c_2 are the two cusps of $X_0(p)$.

In our case
$$J_0(31)(\mathbb{Q}) = rac{\mathbb{Z}}{5\mathbb{Z}} \cdot [c_1 - c_2].$$

Goal. Determine $X_0(31)(\mathbb{Q})$.

• Let $Q \in X_0(31)(\mathbb{Q})$. Then $[Q - c_2] = n \cdot [c_1 - c_2]$ for $n = 0, 1, \dots, 4$.

•
$$Q \sim n \cdot c_1 + (1 - n) \cdot c_2$$
 for $n \in \{0, ..., 4\}$.

• If n = 0 then $Q = c_2$ and n = 1 then $Q = c_1$. What about n = 2, 3, 4? Write $D_n = c_1 + (1 - n)c_2$.

•
$$\therefore Q \sim D_n$$
. i.e. $Q = D_n + \operatorname{div}(f)$ where $f \in \mathbb{Q}(X_0(31))^*$.

In our case $J_0(31)(\mathbb{Q}) = \frac{\mathbb{Z}}{5\mathbb{Z}} \cdot [c_1 - c_2].$

Goal. Determine $X_0(31)(\mathbb{Q})$.

• Let $Q \in X_0(31)(\mathbb{Q})$. Then $[Q - c_2] = n \cdot [c_1 - c_2]$ for $n = 0, 1, \dots, 4$.

•
$$Q \sim n \cdot c_1 + (1 - n) \cdot c_2$$
 for $n \in \{0, ..., 4\}$.

- If n = 0 then $Q = c_2$ and n = 1 then $Q = c_1$. What about n = 2, 3, 4? Write $D_n = c_1 + (1 n)c_2$.
- $\therefore Q \sim D_n$. i.e. $Q = D_n + \operatorname{div}(f)$ where $f \in \mathbb{Q}(X_0(31))^*$.
- *f* ∈ *L*(*D_n*). To compute Riemann–Roch space need a model.
 A model for *X*₀(31) was worked out by Galbraith:

$$X_0(31)$$
 : $y^2 = \underbrace{x^6 - 8x^5 + 6x^4 + 18x^3 - 11x^2 - 14x - 3}_h$

Here c_1 , c_2 are the two points at ∞ on this model. We find that $\dim(L(D_n)) = 1$, 1, 0, 0, 0 for n = 0, 1, 2, 3, 4 respectively. Thus there is no point $Q \sim D_n$ for n = 2, 3, 4. Hence $X_0(31)(\mathbb{Q}) = \{c_1, c_2\}$. In particular, there are no elliptic curves over \mathbb{Q} with a 31-isogeny.

Sketch of Mazur's Theorem for $X_1(p)$

Defn. A morphism of schemes $\theta : X \to Y$ over $\text{Spec}(\mathbb{Z}[1/p])$ is a formal immersion at $x \in X(\mathbb{Q})$ if the induced map

$$\hat{\mathcal{O}}_{Y,f(x)} \to \hat{\mathcal{O}}_{X,x}$$

is surjective.

Remark. Let $q \neq p$ be a prime. Let

$$\operatorname{res}_q(x) := \{ x' \in X(\mathbb{Q}_q) : x' \equiv x \pmod{q} \}$$

which is called the *q*-adic residue disc of *x*. If θ is a formal immersion at *x* then the map

$$heta$$
 : $\operatorname{res}_q(x) o Y(\mathbb{Q}_q)$

is an injection.

Proposition

Let Y = A be an abelian variety such that $A(\mathbb{Q})$ has rank 0. Let $\theta : X \to A$ be a morphism over $\operatorname{Spec}(\mathbb{Z}[1/p])$ that is formal immersion at $x \in X(\mathbb{Q})$. Then

$$X(\mathbb{Q}) \cap \operatorname{res}_q(x) = \{x\}$$

for all primes $q \notin \{2, p\}$.

Proof.

- Let $x' \in X(\mathbb{Q}) \cap \operatorname{res}_q(x)$.
- Then $x' \equiv x \pmod{q}$.
- Thus $\theta(x') \theta(x)$ is an element of $\mathcal{A}(\mathbb{Q})$ that reduces to 0 modulo q.
- But A(Q) is torsion. By the injectivity of torsion θ(x') − θ(x) = 0. Thus θ(x') = θ(x).
- However, as θ is a formal immersion at x, and x' belong to res_q(x) we have x = x'.

Mazur's Theorem for $X_1(p)$

Theorem

Let $p \ge 11$ prime. Then there is no elliptic curve E/\mathbb{Q} with a rational point of order p. Equivalently, $X_1(p)(\mathbb{Q}) \subset \{cusps\}$.

Sketch.

- Suppose $z \in X_1(p)(\mathbb{Q})$ is not a cusp.
- Then z = [(E, P)] where E is an elliptic curve defined over Q and P is a rational point of order p.
- Then *E* has potentially multiplicative reduction at 3.

Let $y = \pi(z)$ where $\pi : X_1(p) \to X_0(p)$ is the degeneracy map. In particular z reduces mod 3 to one of the cusps on X_0 .

The Atkin-Lehner involution swaps the cusps. Thus we can suppose that y reduces to the infinity cusp on X_0 which we denote by $\infty \in X_0(p)(\mathbb{Q})$.

Sketch.

- Suppose $z \in X_1(p)(\mathbb{Q})$ is not a cusp.
- Then z = [(E, P)] where E is an elliptic curve defined over Q and P is a rational point of order p.
- Then *E* has potentially multiplicative reduction at 3.

Let $y = \pi(z)$ where $\pi : X_1(p) \to X_0(p)$ is the degeneracy map. In particular y reduces mod 3 to one of the cusps on X_0 .

The atkin-Lehner involution swaps the cusps. Thus we can suppose that y reduces to the infinity cusp on X_0 which we denote by $\infty \in X_0(p)(\mathbb{Q})$.

- We let $J_e(p)$ be the largest quotient of J that has analytic rank 0. This **Merel's winding quotient**. We know by Kolyvagin–Logachev that this has rank 0. We take θ to be the map $X_0(p) \rightarrow J_0(p) \rightarrow J_e(p)$.
- Highly non-trivial fact: this is a formal immersion at ∞ . Now $y \in \operatorname{res}_3(\infty) \cap X_0(3)(\mathbb{Q}).$

Hence by previous proposition $y = \infty$. Thus z is a cusp.

Other modular curves

Proofs of

- Mazur's theorem for X₀(p);
- Merel's Uniform Boundedness theorem;
- the theorem of Bilu, Parent and Rebolledo for $X_s^+(p)$;

all crucially depend on the existence of a rank 0 quotient of the modular Jacobian.

• However, for $X_{ns}^+(p)$ it is known that every factor of the Jacobian has odd analytic rank, and so assuming BSD has non-zero rank. This is the reason why Serre's uniformity conjecture is still an open problem.