Explicit Arithmetic of Modular Curves

Lecture III: Eichler-Shimura and Modular Jacobians

Samir Siksek (Warwick/IHÉS/IHP)

19 June 2019

Notation

H
$\Gamma_{H} \quad\left\{A \in \mathrm{SL}_{2}(\mathbb{Z}):(A \bmod N) \in H \cap \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right\}$, congruence subgroup associated to H.
$X_{H} \quad$ modular curve associated to $H \quad\left(X_{H}(\mathbb{C}) \cong \Gamma_{H} \backslash \mathbb{H}^{*}\right)$.
$J_{H} \quad$ Jacobian of H. X_{H} and J_{H} have models over $\operatorname{Spec}(\mathbb{Z}[1 / N])$, so makes sense to talk about reduction at $\ell \nmid N$.
$\Omega(H) \quad$ space of regular differentials on X_{H}.
$S_{2}\left(\Gamma_{H}\right)$ space of weight 2 cuspforms for Γ_{H}.
There is an isomorphism

$$
S_{2}\left(\Gamma_{H}\right) \cong \Omega\left(X_{H}\right), \quad f(q) \mapsto f(q) \frac{d q}{q}
$$

In particular,

$$
\operatorname{genus}\left(X_{H}\right):=\operatorname{dim}\left(\Omega\left(X_{H}\right)\right)=\operatorname{dim}\left(S_{2}\left(\Gamma_{H}\right)\right)
$$

Eichler-Shimura

There is an action of the Hecke algebra on $S_{2}\left(\Gamma_{H}\right)$. Let f_{1}, \ldots, f_{n} be representatives of Galois orbits of Hecke eigenforms.

Theorem (Eichler-Shimura)

Let $f \in\left\{f_{1}, \ldots, f_{n}\right\}$ be some representative of the Galois orbits of the eigenforms.

- Associated to f is an abelian variety $\mathcal{A}_{f} / \mathbb{Q}$.
- $\operatorname{dim}\left(\mathcal{A}_{f}\right)=\left[K_{f}: \mathbb{Q}\right]$ where K_{f} is the Hecke eigenvalue field of f.
- Moreover, $\operatorname{End}_{\mathbb{Q}}\left(\mathcal{A}_{f}\right)$ is an order in K_{f} (we say that \mathcal{A}_{f} is of GL_{2}-type).
- In particular $\operatorname{rank}\left(\mathcal{A}_{f}(\mathbb{Q})\right)$ is a multiple of $\left[K_{f}: \mathbb{Q}\right]$.

Finally,

$$
J_{H} \sim \mathcal{A}_{f_{1}} \times \mathcal{A}_{f_{2}} \times \cdots \times \mathcal{A}_{f_{n}}
$$

where \sim denotes isogeny over \mathbb{Q}.

Example $J_{0}(43)$

Let us consider $X_{0}(43)$ and its Jacobian $J_{0}(43)$. i.e. we're taking $H=B_{0}(43) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{43}\right)$ and $\Gamma_{H}=\Gamma_{0}(43)$.
Using Magma or SAGE: eigenforms of $S_{2}\left(\Gamma_{0}(43)\right)$ are

$$
\begin{aligned}
f & =q-2 q^{2}-2 q^{3}+2 q^{4}-4 q^{5}+\cdots \\
g_{1} & =q+\sqrt{2} \cdot q^{2}-\sqrt{2} \cdot q^{3}+(2-\sqrt{2}) \cdot q^{5}+\cdots \\
g_{2} & =q-\sqrt{2} \cdot q^{2}+\sqrt{2} \cdot q^{3}+(2+\sqrt{2}) \cdot q^{5}+\cdots
\end{aligned}
$$

The Hecke eigenvalue field for f is \mathbb{Q}. The eigenform f corresponds to a dimension 1 abelian variety, which is the elliptic curve 43A1 with Weierstrass model

$$
\mathcal{A}_{f}: y^{2}+y=x^{3}+x^{2}
$$

Note that g_{1}, g_{2} form a single Galois orbit, with Hecke eigenvalue field $\mathbb{Q}(\sqrt{2})$ of degree 2 . The abelian variety $\mathcal{A}_{g_{1}}=\mathcal{A}_{g_{2}}$ has dimension 2. Moreover,

$$
J_{0}(43) \sim \mathcal{A}_{f} \times \mathcal{A}_{g_{1}}
$$

has dimension 3 and so $X_{0}(43)$ has genus 3 . What can we say about the Mordell-Weil group $J_{0}(43)(\mathbb{Q})$?

Kolyvagin-Logachev

Now let $g \in\left\{f_{1}, \ldots, f_{n}\right\}$, let K_{g} be the Hecke eigenvalue field of g, and let $\sigma_{1}, \ldots, \sigma_{d}: K_{g} \hookrightarrow \mathbb{C}$ be the embeddings of \mathbb{C} (here
$\left.d=\left[K_{g}: \mathbb{Q}\right]=\operatorname{dim}\left(\mathcal{A}_{g}\right)\right)$. Let $g_{i}=\sigma(g)$ be the conjugates of g. Then we have an equality of L-functions

$$
L\left(\mathcal{A}_{g}, s\right)=\prod_{i=1}^{d} L\left(g_{i}, s\right) \quad\left(g=\sum a_{n} q^{q} \Longrightarrow L(g, s)=\sum \frac{a_{n}}{n^{s}}\right)
$$

We have the following famous theorem, which is a version of weak BSD for modular Jacobians.

Theorem (Kolyvagin and Logachev)

Suppose \mathcal{A}_{g} is a factor of $J_{0}(M)$ for some M.
(i) If $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=0$ for some i then $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=0$ for all i and $\operatorname{rank}\left(\mathcal{A}_{g}(\mathbb{Q})\right)=0$.
(ii) If $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=1$ for some i then $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=1$ for all i and $\operatorname{rank}\left(\mathcal{A}_{g}(\mathbb{Q})\right)=\operatorname{dim}\left(\mathcal{A}_{g}\right)=\left[K_{g}: \mathbb{Q}\right]$.

$$
L\left(\mathcal{A}_{g}, s\right)=\prod_{i=1}^{d} L\left(g_{i}, s\right) \quad\left(g=\sum a_{n} q^{q} \Longrightarrow L(g, s)=\sum \frac{a_{n}}{n^{s}}\right)
$$

Theorem (Kolyvagin and Logachev)

Suppose \mathcal{A}_{g} is a factor of $J_{0}(M)$ for some M.
(i) If $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=0$ for some i then $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=0$ for all i and $\operatorname{rank}\left(\mathcal{A}_{g}(\mathbb{Q})\right)=0$.
(ii) If $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=1$ for some i then $\operatorname{ord}_{s=1}\left(L\left(g_{i}, s\right)\right)=1$ for all i and $\operatorname{rank}\left(\mathcal{A}_{g}(\mathbb{Q})\right)=\operatorname{dim}\left(\mathcal{A}_{g}\right)=\left[K_{g}: \mathbb{Q}\right]$.

Fact. $L\left(\mathcal{A}_{g}, 1\right) / \Omega_{g} \in \mathbb{Q}$ is a rational number, where Ω_{g} is integral of the Néron differential over $\mathcal{A}_{g}(\mathbb{R})$.

The modular symbols algorithm can in fact compute $L\left(\mathcal{A}_{g}, 1\right) / \Omega_{g}$ exactly. Values $L^{(r)}\left(\mathcal{A}_{g}, 1\right)$ can only be computed numerically for $r \geq 1$.

$X_{0}(43)$ continued.

Recall

$$
J_{0}(43) \sim \mathcal{A}_{f} \times \mathcal{A}_{g_{1}} \quad \operatorname{dim}\left(\mathcal{A}_{f}\right)=1, \quad \operatorname{dim}\left(\mathcal{A}_{g_{1}}\right)=2
$$

What can we say about the Mordell-Weil group $J_{0}(43)(\mathbb{Q})$?
In fact

$$
\frac{L\left(\mathcal{A}_{f}, 1\right)}{\Omega_{\mathcal{A}_{f}}}=0, \quad \frac{L\left(\mathcal{A}_{g_{1}}, 1\right)}{\Omega_{\mathcal{A}_{g}}}=\frac{2}{7}
$$

So we know that $\mathcal{A}_{g_{1}}(\mathbb{Q})$ has rank 0 from the Kolyvagin-Logachev theorem. What about $\mathcal{A}_{f}(\mathbb{Q})$?

We find that

$$
L^{\prime}(f, 1)=0.34352 \ldots
$$

so by the Kolyvagin-Logachev theorem, $\mathcal{A}_{f}(\mathbb{Q})$ has rank 1 . Hence $J_{0}(43)(\mathbb{Q})$ has rank 1.

Injectivity of Torsion

Let \mathcal{A} be an abelian variety over \mathbb{Q}. We know $\mathcal{A}(\mathbb{Q})_{\text {tors }}$ is finite.
Let p be a prime of good reduction for \mathcal{A}. Then we have a natural homomorphism

$$
\operatorname{red}_{p}: \mathcal{A}(\mathbb{Q}) \rightarrow \mathcal{A}\left(\mathbb{F}_{p}\right), \quad P \mapsto \tilde{P}
$$

Theorem (Katz)
Let \mathcal{A} be an abelian variety over \mathbb{Q}. Let $p \geq 3$ be a prime of good reduction. Then red $_{p}$ is injective when restricted to the torsion subgroup $\mathcal{A}(\mathbb{Q})_{\text {tors }}$.

$X_{0}(31)$ and $X_{1}(31)$

Let's consider $J_{0}(31)$ instead. There is only one Galois orbit of eigenforms of weight 2 for $\Gamma_{0}(31)$:

$$
\begin{array}{ll}
f_{1}=q+\alpha q^{2}-2 \alpha q^{3}+(\alpha-1) q^{4}+q^{5}+\cdots, & \alpha=\frac{1+\sqrt{5}}{2} \\
f_{2}=q+\beta q^{2}-2 \beta q^{3}+(\beta-1) q^{4}+q^{5}+\cdots, & \beta=\frac{1-\sqrt{5}}{2}
\end{array}
$$

$\therefore X_{0}$ (31) has genus 2 .
And $J_{0}(31)$ is a simple 2-dimensional abelian variety.
We find that

$$
L\left(J_{0}(31), 1\right) / \Omega=2 / 5, \quad \therefore \operatorname{rank}\left(J_{0}(31)(\mathbb{Q})\right)=0
$$

Objective. Use fact $\operatorname{rank}\left(J_{0}(31)(\mathbb{Q})\right)=0$ to show that are no elliptic curves over \mathbb{Q} with a point of order 31 .

Work by contradiction. Suppose E / \mathbb{Q} has a \mathbb{Q}-rational point Q of order 31. Then $P=[(E, Q)]$ is a non-cuspidal rational point $P \in X_{1}(31)(\mathbb{Q})$.

We consider this commutative diagram.

Note that $\pi(P)=[(E,\langle Q\rangle)]$.

Assumption: E / \mathbb{Q} has a point Q of order 31 .
Question: Can E has good reduction at 3? Suppose it does. Then, by the injectivity of torion, $E\left(\mathbb{F}_{3}\right)$ has a point of order 31 , which is impossible because $\# E\left(\mathbb{F}_{3}\right) \leq 7$ by the Hasse-Weil bounds.
$\therefore \quad E$ cannot have good reduction at 3 .
Question: Can E have potentially good reduction at 3? Suppose it does. We consider the filtration

$$
E\left(\mathbb{Q}_{3}\right) \supset E_{0}\left(\mathbb{Q}_{3}\right) \supset E_{1}\left(\mathbb{Q}_{3}\right) \supset E_{2}\left(\mathbb{Q}_{3}\right) \cdots
$$

Theory of the formal group tells us $E_{1}\left(\mathbb{Q}_{3}\right) \cong \mathbb{Z}_{3}$ which has no torsion. Moreover,

$$
\left[E\left(\mathbb{Q}_{3}\right): E_{0}\left(\mathbb{Q}_{3}\right)\right] \leq 4, \quad\left[E_{0}\left(\mathbb{Q}_{3}\right): E_{1}\left(\mathbb{Q}_{3}\right)\right]=\# \tilde{E}_{n s}\left(\mathbb{F}_{3}\right)=3
$$

as E has additive reduction.
$\therefore \quad E\left(\mathbb{Q}_{3}\right)$ does not have 31 torsion. Contradiction.

Assumption: E / \mathbb{Q} has a point Q of order 31 .
$\therefore \quad E$ has potentially multiplicative reduction at 3 .

$$
\therefore \quad \operatorname{ord}_{3}(j(E))<0 .
$$

$$
\begin{aligned}
\text { Recall } P= & {[(E, Q)] \in X_{1}(31)(\mathbb{Q}), \pi(P)=[(E,\langle Q\rangle)] \in X_{0}(31)(\mathbb{Q}) \text { and } } \\
& X_{1}(31)(\mathbb{Q}) \xrightarrow{\pi} X_{0}(31)(\mathbb{Q}) \longrightarrow X(1)(\mathbb{Q}) \\
\downarrow & \downarrow \\
& X_{1}(31)\left(\mathbb{F}_{3}\right) \longrightarrow X_{0}(31)\left(\mathbb{F}_{3}\right) \longrightarrow X(1)\left(\mathbb{F}_{3}\right) .
\end{aligned}
$$

$\operatorname{ord}_{3}(j(E))<0 \Longrightarrow$ image of P in in $X(1)\left(\mathbb{F}_{3}\right)$ is the cusp.

$$
\therefore \pi(P) \equiv c \quad(\bmod 3) \quad c \in\left\{\text { cusps of } X_{0}(31)\right\}
$$

Consider $[\pi(P)-c] \in J_{0}(31)(\mathbb{Q})$.
This is a torsion point as $J_{0}(31)(\mathbb{Q})$ has rank 0 .

Recall $P=[(E, Q)] \in X_{1}(31)(\mathbb{Q}), \pi(P)=[(E,\langle Q\rangle)] \in X_{0}(31)(\mathbb{Q})$ and

$\operatorname{ord}_{3}(j(E))<0 \Longrightarrow$ image of P in in $X(1)\left(\mathbb{F}_{3}\right)$ is the cusp.

$$
\therefore \pi(P) \equiv c \quad(\bmod 3) \quad c \in\left\{\text { cusps of } X_{0}(31)\right\} .
$$

Consider $[\pi(P)-c] \in J_{0}(31)(\mathbb{Q})$. This is a torsion point as $J_{0}(31)(\mathbb{Q})$ has rank 0.
But $[\widetilde{\pi(P)}-c]=0 \in J_{0}(31)\left(\mathbb{F}_{3}\right)$. By injectivity of reduction modulo 3 on torsion $[\pi(P)-c]=0 \in J_{0}(31)(\mathbb{Q}) . \quad \therefore \pi(P)=c$.

$$
\therefore X_{1}(31)(\mathbb{Q}) \subset\{\text { cusps }\} .
$$

- We only needed the fact that the point comes from $X_{1}(31)$ to make sure it reduces to a cusp modulo 3 .
- In fact if $R \in X_{0}(31)(\mathbb{Q})$ reduces to a cusp modulo any prime $p \neq 2$, 31 then R must equal that cusp, by the above argument.
- i.e. if $R \in X_{0}(31)(\mathbb{Q})$ then $j(R) \in \mathbb{Z}[1 / 62]$. So problem of determining the rational points on $X_{0}(31)$ is essentially reduced to a problem about integral points.
- Determining $X_{0}(31)(\mathbb{Q})$ is easier if we know the whole of $J_{0}(31)(\mathbb{Q})$.

Theorem (Mazur)

Let p be a prime. Then

$$
J_{0}(p)(\mathbb{Q})_{\text {tors }}=\left(\mathbb{Z} / d_{p} \mathbb{Z}\right) \cdot\left[c_{1}-c_{2}\right], \quad d_{p}=\operatorname{num}\left(\frac{p-1}{12}\right)
$$

where c_{1}, c_{2} are the two cusps of $X_{0}(p)$.

$J_{0}(31)(\mathbb{Q})$

Theorem (Mazur)
Let p be a prime. Then

$$
J_{0}(p)(\mathbb{Q})_{\text {tors }}=\left(\mathbb{Z} / d_{p} \mathbb{Z}\right) \cdot\left[c_{1}-c_{2}\right], \quad d_{p}=\operatorname{num}\left(\frac{p-1}{12}\right)
$$

where c_{1}, c_{2} are the two cusps of $X_{0}(p)$.
In our case $\quad J_{0}(31)(\mathbb{Q})=\frac{\mathbb{Z}}{5 \mathbb{Z}} \cdot\left[c_{1}-c_{2}\right]$.
Goal. Determine $X_{0}(31)(\mathbb{Q})$.

- Let $Q \in X_{0}(31)(\mathbb{Q})$. Then $\left[Q-c_{2}\right]=n \cdot\left[c_{1}-c_{2}\right]$ for $n=0,1, \ldots, 4$.
- $Q \sim n \cdot c_{1}+(1-n) \cdot c_{2}$ for $n \in\{0, \ldots, 4\}$.
- If $n=0$ then $Q=c_{2}$ and $n=1$ then $Q=c_{1}$. What about $n=2,3,4$? Write $D_{n}=c_{1}+(1-n) c_{2}$.
- $\therefore Q \sim D_{n}$. i.e. $Q=D_{n}+\operatorname{div}(f)$ where $f \in \mathbb{Q}\left(X_{0}(31)\right)^{*}$.

In our case $\quad J_{0}(31)(\mathbb{Q})=\frac{\mathbb{Z}}{5 \mathbb{Z}} \cdot\left[c_{1}-c_{2}\right]$.
Goal. Determine $X_{0}(31)(\mathbb{Q})$.

- Let $Q \in X_{0}(31)(\mathbb{Q})$. Then $\left[Q-c_{2}\right]=n \cdot\left[c_{1}-c_{2}\right]$ for $n=0,1, \ldots, 4$.
- $Q \sim n \cdot c_{1}+(1-n) \cdot c_{2}$ for $n \in\{0, \ldots, 4\}$.
- If $n=0$ then $Q=c_{2}$ and $n=1$ then $Q=c_{1}$. What about $n=2,3,4$? Write $D_{n}=c_{1}+(1-n) c_{2}$.
- $\therefore Q \sim D_{n}$. i.e. $Q=D_{n}+\operatorname{div}(f)$ where $f \in \mathbb{Q}\left(X_{0}(31)\right)^{*}$.
- $f \in L\left(D_{n}\right)$. To compute Riemann-Roch space need a model.

A model for $X_{0}(31)$ was worked out by Galbraith:

$$
x_{0}(31): y^{2}=\underbrace{x^{6}-8 x^{5}+6 x^{4}+18 x^{3}-11 x^{2}-14 x-3}_{h} .
$$

Here c_{1}, c_{2} are the two points at ∞ on this model. We find that $\operatorname{dim}\left(L\left(D_{n}\right)\right)=1,1,0,0,0$ for $n=0,1,2,3,4$ respectively. Thus there is no point $Q \sim D_{n}$ for $n=2,3,4$. Hence $X_{0}(31)(\mathbb{Q})=\left\{c_{1}, c_{2}\right\}$. In particular, there are no elliptic curves over \mathbb{Q} with a 31 -isogeny.

Sketch of Mazur's Theorem for $X_{1}(p)$

Defn. A morphism of schemes $\theta: X \rightarrow Y$ over $\operatorname{Spec}(\mathbb{Z}[1 / p])$ is a formal immersion at $x \in X(\mathbb{Q})$ if the induced map

$$
\hat{\mathcal{O}}_{Y, f(x)} \rightarrow \hat{\mathcal{O}}_{X, x}
$$

is surjective.
Remark. Let $q \neq p$ be a prime. Let

$$
\operatorname{res}_{q}(x):=\left\{x^{\prime} \in X\left(\mathbb{Q}_{q}\right): x^{\prime} \equiv x \quad(\bmod q)\right\}
$$

which is called the q-adic residue disc of x. If θ is a formal immersion at x then the map

$$
\theta: \operatorname{res}_{q}(x) \rightarrow Y\left(\mathbb{Q}_{q}\right)
$$

is an injection.

Proposition

Let $Y=\mathcal{A}$ be an abelian variety such that $\mathcal{A}(\mathbb{Q})$ has rank 0 . Let $\theta: X \rightarrow \mathcal{A}$ be a morphism over $\operatorname{Spec}(\mathbb{Z}[1 / p])$ that is formal immersion at $x \in X(\mathbb{Q})$. Then

$$
X(\mathbb{Q}) \cap \operatorname{res}_{q}(x)=\{x\}
$$

for all primes $q \notin\{2, p\}$.

Proof.

- Let $x^{\prime} \in X(\mathbb{Q}) \cap \operatorname{res}_{q}(x)$.
- Then $x^{\prime} \equiv x(\bmod q)$.
- Thus $\theta\left(x^{\prime}\right)-\theta(x)$ is an element of $\mathcal{A}(\mathbb{Q})$ that reduces to 0 modulo q.
- But $\mathcal{A}(\mathbb{Q})$ is torsion. By the injectivity of torsion $\theta\left(x^{\prime}\right)-\theta(x)=0$. Thus $\theta\left(x^{\prime}\right)=\theta(x)$.
- However, as θ is a formal immersion at x, and x^{\prime} belong to $\operatorname{res}_{q}(x)$ we have $x=x^{\prime}$.

Mazur's Theorem for $X_{1}(p)$

Theorem

Let $p \geq 11$ prime. Then there is no elliptic curve E / \mathbb{Q} with a rational point of order p. Equivalently, $X_{1}(p)(\mathbb{Q}) \subset\{c u s p s\}$.

Sketch.

- Suppose $z \in X_{1}(p)(\mathbb{Q})$ is not a cusp.
- Then $z=[(E, P)]$ where E is an elliptic curve defined over \mathbb{Q} and P is a rational point of order p.
- Then E has potentially multiplicative reduction at 3 .

Let $y=\pi(z)$ where $\pi: X_{1}(p) \rightarrow X_{0}(p)$ is the degeneracy map. In particular z reduces mod 3 to one of the cusps on X_{0}.

The Atkin-Lehner involution swaps the cusps. Thus we can suppose that y reduces to the infinity cusp on X_{0} which we denote by $\infty \in X_{0}(p)(\mathbb{Q})$.

Sketch.

- Suppose $z \in X_{1}(p)(\mathbb{Q})$ is not a cusp.
- Then $z=[(E, P)]$ where E is an elliptic curve defined over \mathbb{Q} and P is a rational point of order p.
- Then E has potentially multiplicative reduction at 3 .

Let $y=\pi(z)$ where $\pi: X_{1}(p) \rightarrow X_{0}(p)$ is the degeneracy map. In particular y reduces mod 3 to one of the cusps on X_{0}.
The atkin-Lehner involution swaps the cusps. Thus we can suppose that y reduces to the infinity cusp on X_{0} which we denote by $\infty \in X_{0}(p)(\mathbb{Q})$.

- We let $J_{e}(p)$ be the largest quotient of J that has analytic rank 0 . This Merel's winding quotient. We know by Kolyvagin-Logachev that this has rank 0 . We take θ to be the map $X_{0}(p) \rightarrow J_{0}(p) \rightarrow J_{e}(p)$.
- Highly non-trivial fact: this is a formal immersion at ∞. Now

$$
y \in \operatorname{res}_{3}(\infty) \cap X_{0}(3)(\mathbb{Q}) .
$$

Hence by previous proposition $y=\infty$. Thus z is a cusp.

Other modular curves

- Proofs of
- Mazur's theorem for $X_{0}(p)$;
- Merel's Uniform Boundedness theorem;
- the theorem of Bilu, Parent and Rebolledo for $X_{s}^{+}(p)$;
all crucially depend on the existence of a rank 0 quotient of the modular Jacobian.
- However, for $X_{n s}^{+}(p)$ it is known that every factor of the Jacobian has odd analytic rank, and so assuming BSD has non-zero rank. This is the reason why Serre's uniformity conjecture is still an open problem.

